检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹乐平[1]
机构地区:[1]湖南生物机电职业技术学院教务处,湖南长沙410127
出 处:《食品科学》2009年第14期200-203,共4页Food Science
基 金:湖南省教育厅科学研究项目(06D059)
摘 要:目的:构建柑橘质量模型,实现其计算机视觉法质量检测与在线分级。方法:以湖南湘中成熟中期涟红温州蜜柑为研究对象,对计算机视觉系统采集的各柑橘的4幅图像进行图像裁切、图像去背景、图像二值化与取反操作后,提取柑橘区域像素,以柑橘区域像素与图像像素比为自变量,建立柑橘质量偏最小二乘回归(PLS)预测模型。结果:柑橘质量预测绝对误差为-14.9092~4.9981g,平均误差为-3.9278g,误差标准差4.5210g,±10g质量内的正确识别率为93.3333%,±8g质量内正确识别率76.6667%。结论:通过计算机视觉技术进行柑橘质量在线分级和生长期中挂果质量的监测是可行的。A model for citrus weight measuring was developed to realize online grading of citrus fruit with computer vision system. Four images from each of mid-maturing Lianhong Wenzhou citrus fruits (grown in the middle part of Hunan province) captured by computer vision system were processed by cutting, background removal, binary conversion and negative operation and finally the images of fruit part were extracted. The pixel ratios of fruit part/total image were used to construct partial least square (PLS) regression model to estimate fruit weight. Results showed that the absolute Weight estimation error was -14.9092 -4.9981 g and the average error was -3.9278 g. The standard deviation was 4.5210 g, and the correctness for accuracy ±10 g was 93.3333% and for accuracy ± 8 g 76.6667%. It is feasible to estimate citrus fruit weight online and monitor the fruit weight during growing period by computer vision system.
分 类 号:TS207.7[轻工技术与工程—食品科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222