检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科学技术大学计算机学院,长沙410073
出 处:《计算机辅助设计与图形学学报》2009年第7期893-899,共7页Journal of Computer-Aided Design & Computer Graphics
基 金:国家"九七三"重点基础研究发展计划项目(2009CB723803);国家"八六三"高技术研究发展计划(2006AA01Z309)
摘 要:由于视线方向上的网格单元前后相互影响,导致3D流场可视化面临遮挡和混乱问题,为此提出一种基于流场特征的多分辨率绘制方法.首先利用基于GPU的BP网络流场特征提取方法对流场典型特征或用户关注的新特征进行选取、训练和识别;在此基础上,利用Voronoi图技术对特征数据构造特征树;最后基于鱼眼视图多分辨率技术进行绘制.对绘制和性能进行测试的实验结果表明,该方法能有效地提取流场特征,降低遮挡和混乱对可视化效果影响.Due to the mutual influence of grid points on the view direction, visualization to a 3D fluid field often has problem of occlusion and cluttering. In this paper, we propose a novel approach for solving the occlusion and cluttering problem based on multi-resolution rendering. By the solution, first, a new fluid feature extraction method is presented by taking advantage of the strong non-linear ability of the neural network. Then based On the flow feature detected, a Voronoi graph method is used to organize field data. Finally, the field data is visualized by the "fisheye views" method. The test result of the visualization effects and performance to our method shows that our proposed approach is feasible and efficient in solving the occlusion and cluttering problem.
关 键 词:3D流场 BP神经网络 特征提取 多分辨率 VORONOI图 鱼眼视图
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145