GPU加速3D流场特征提取与多分辨率绘制  被引量:2

GPU-Accelerated Feature Extraction and Multi-resolution Visualization for Complex 3D Fluid Field

在线阅读下载全文

作  者:徐华勋[1] 曾亮[1] 蔡勋[1] 李思昆[1] 

机构地区:[1]国防科学技术大学计算机学院,长沙410073

出  处:《计算机辅助设计与图形学学报》2009年第7期893-899,共7页Journal of Computer-Aided Design & Computer Graphics

基  金:国家"九七三"重点基础研究发展计划项目(2009CB723803);国家"八六三"高技术研究发展计划(2006AA01Z309)

摘  要:由于视线方向上的网格单元前后相互影响,导致3D流场可视化面临遮挡和混乱问题,为此提出一种基于流场特征的多分辨率绘制方法.首先利用基于GPU的BP网络流场特征提取方法对流场典型特征或用户关注的新特征进行选取、训练和识别;在此基础上,利用Voronoi图技术对特征数据构造特征树;最后基于鱼眼视图多分辨率技术进行绘制.对绘制和性能进行测试的实验结果表明,该方法能有效地提取流场特征,降低遮挡和混乱对可视化效果影响.Due to the mutual influence of grid points on the view direction, visualization to a 3D fluid field often has problem of occlusion and cluttering. In this paper, we propose a novel approach for solving the occlusion and cluttering problem based on multi-resolution rendering. By the solution, first, a new fluid feature extraction method is presented by taking advantage of the strong non-linear ability of the neural network. Then based On the flow feature detected, a Voronoi graph method is used to organize field data. Finally, the field data is visualized by the "fisheye views" method. The test result of the visualization effects and performance to our method shows that our proposed approach is feasible and efficient in solving the occlusion and cluttering problem.

关 键 词:3D流场 BP神经网络 特征提取 多分辨率 VORONOI图 鱼眼视图 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象