检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南大学电气与信息工程学院,长沙410082 [2]中南大学信息科学与工程学院,长沙410075 [3]中南大学物理科学与技术学院,长沙410075
出 处:《计算机应用》2009年第8期2281-2284,2314,共5页journal of Computer Applications
基 金:国家自然科学基金资助项目(60872128);国家技术创新基金资助项目(07C26214301740)
摘 要:针对时变非线性多输入多输出(MIMO)系统在线辨识较困难的问题,提出一种基于最小二乘支持向量机(LSSVM)的快速在线辨识方法。介绍了现有LSSVM增量式和在线式学习算法,并为它引入了一些加速实现策略,得到LSSVM快速在线式学习算法。将MIMO系统分解为多个多输入单输出(MISO)子系统,对每一个MISO利用一个LSSVM在线建模;这些LSSVM执行快速在线式学习算法。数字仿真显示该方法建模速度快,模型预测精度高。To tackle the difficulty in identifying time-varying nonlinear Multi-Input Multi-Output (MIMO) system online, a fast online system identification approach based on Least Squares Support Vector Machine (LSSVM) was proposed. The existing LSSVM incremental and online learning algorithms were introduced, and some speeding up implementing tactics were designed and adopted in the algorithm; consequently, a fast online LSSVM learning algorithm was obtained. MIMO system was decomposed into multiple Multi-Input Single-Output (MISO) subsystems, and each MISO was modeled online via a LSSVM. The numerical simulation shows the modeling method is faster and the obtained models provide accurate prediction.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.46.174