检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]郑州大学交通运输工程系,河南郑州450002 [2]河南电力试验研究院
出 处:《中外公路》2009年第4期157-162,共6页Journal of China & Foreign Highway
基 金:河南省杰出人才创新基金项目(编号:074200510006)
摘 要:支持向量机(SVM)以其良好的学习性能被广泛应用于包括隧道围岩变形在内的时间序列预测,核函数形式对其预测能力有重要影响,故灵活运用核技巧来增强推广性能已成为支持向量机应用研究的一个重要方面。对于标准SVM及最小二乘支持向量机(LS-SVM),由于其核函数必须满足Mercer条件,因而大大限制了核函数选取范围,制约着推广能力的进一步提升。为此引入一种新型的时间序列预测模型———线性规划支持向量机(LP-SVM),因其核函数不必满足Mercer条件,从而为灵活选取核函数提供了方便。将新预测模型应用于岭南高速公路雪家庄隧道围岩变形预测,分析结果表明,在同时采用径向基(RBF)核函数的情况下,LP-SVM与LS-SVM的预测精度非常接近,能够满足工程需要,但由于前者的核函数可以在更大范围内选取,使其预测性能具有更大的提升空间,从而为岩体变形预测提供了一种更具潜力的新途径。
分 类 号:U456.31[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.234.66