检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:牟忠凯[1] 隋立芬[1] 范澎湃[1] 张清华[1]
出 处:《测绘科学技术学报》2009年第4期250-253,共4页Journal of Geomatics Science and Technology
基 金:国家自然科学基金(40474007);信息工程大学测绘学院研究生创新创优基金资助
摘 要:航天器姿态确定的模型具有严重的非线性性。而采样卡尔曼滤波(UKF)通过采用一组确定性采样得到的Sigma点比扩展卡尔曼滤波(EKF)能够更准确地近似初始分布,使滤波在不准确的初始条件下更快地收敛。利用修正罗德里格参数(MRPs)表示姿态,用动力学方程进行角速率的传播,利用UKF的改进算法迭代采样卡尔曼滤波(IUKF)对航天器的姿态进行估计。在分析IUKF性能的基础上进一步对IUKF算法作了改进,通过仿真算例将3种方法进行了比较。结果表明:IUKF及改进IUKF算法姿态参数的滤波精度比UKF更高,同时改进IUKF算法比IUKF的滤波能更快趋于稳定。The model for spacecraft attitude determination is severely nonlinearized. The Unscented Kalman Filter uses a determinately selected set of sample points to more accurately map the probability distribution than the linearization of the standard Extended Kalman Filter, leading to faster convergence from inaccurate initial conditions in attitude estimation problems. MRPs and dynamic equation were used for attitude representation and the propagation of angular velocity respectively, Iterated Unscented Kalman Filter(IUKF) and improved IUKF algorithm were used for spacecraft attitude estimation, and comparisons were maed by a simulation experience. The results indicated that IUKF and improved IUKF possessed higher accuracy than the Unscented Kalman Filter, and improved IUKF became steady earlier than IUKF.
关 键 词:采样卡尔曼滤波 迭代采样卡尔曼滤波 修正罗德里格参数 航天器 姿态确定
分 类 号:P228[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200