检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《科学技术与工程》2009年第17期5172-5175,共4页Science Technology and Engineering
摘 要:基于分形和支持向量机回归理论,建立了装备技术状态预测模型。将反映装备运行状态的特征数据作为时间序列,首先进行相空间重构,得到时间序列的最小嵌入维数,以此作为支持向量机输入节点数。利用支持向量机对样本训练,建立预测模型。以装备振动信号预测为实例,表明将时间序列最小嵌入维数作为支持向量机输入节点数目,所建立的模型是最优的。支持向量机预测结果和真实值相比误差较小,可以满足装备技术状态分析和预测的要求。A technique condition forecasting model of military equipment based on fractal theory and support vector regression (SVR) was presented. Take the feature data that reflect equipment operation condition as a time series, techniques of phase space reconstruction were used to calculate the minimum embedding dimension, which regard it as the input nodes of support vector regression. The forecasting model was built up after samples series training. The case study of equipment vibration signal forecasting shows that, take the time series minimum embedding dimension as the input nodes of support vector regression, the model is optimal. Compared with true value, the SVR forecasting result is estimated with less error, the model can better meet the requirement of equipment technique condition analysis and forecasting.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.224