检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:信昆仑[1] 陶涛[1] 李树平[1] 刘遂庆[1]
机构地区:[1]同济大学环境科学与工程学院,上海200092
出 处:《武汉大学学报(工学版)》2009年第4期461-465,共5页Engineering Journal of Wuhan University
基 金:国家自然科学青年基金资助项目(编号:50409016);国家科技支撑计划项目(编号:2006BAJ08B03)
摘 要:讨论了影响城市用水量变化的气象因素,对某市6个月的用水量及气象数据进行分析,评估了温度、湿度、降水量与城市用水量的相关程度,并通过分别引入单气象因子和多气象因子,建立了日用水量预测的ARX模型.结果表明,在单步长(1 d)预测中,综合考虑最高温度和平均湿度的影响后,预测精度较时间序列的自回归模型有较大改进,同时也优于仅考虑单气象因子的预测模型.此外,在多步长的预测中,考虑气象因子后的预测模型精度仍具有明显的优势,是对用水量自回归时间序列预测方法的有效完善.Due to the comprehensive factors which influence the demand of water supply, other than using statistical forecast method, it is very difficult to build an explanatory forecast model to predict the water supply demand. The meteorological factors that influence the urban water demand through analysis of 6 months data of water supply demand and meteorological factors. The relevant coefficients of temperature, humidity and rainfall against water consumption are evaluated; and the ARX models for water demand forecast are built by separately introducing the single factor or combined factors. The results show that, in the singletime step forecasting, the ARX model in which both factors of highest temperature and average humidity produced a more precised result than AR model also than one-factor involved model. Furthermore, for multitime step forecasting, the ARX model shows better precision of results, which means a promised improvement on the water demand forecast model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.177