检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]昆明理工大学国土资源工程学院,昆明650093 [2]成都大学电子信息工程学院,成都610106 [3]阿坝州中等职业技术学校机电部,阿坝州623200
出 处:《自动化与仪表》2009年第8期34-37,共4页Automation & Instrumentation
基 金:成都市科技攻关项目(07GGYB198SF)
摘 要:提出一种基于T-S模糊模型的多输入多输出预测控制策略。T-S模糊模型用于描述对象的非线性动态特性,模糊规则将非线性系统划分为多个局部子线性模型。为提高预测控制性能,采用多步线性化模型构成多步预报器,从而将预测控制中的非线性优化问题转化为一个线性二次寻优问题。串接贮槽液位控制系统的仿真结果表明,多步线性化模型预测控制性能优于单步线性化模型预测控制性能。A kind of MIMO nonlinear model predictive control strategy based on T-S fuzzy model is present. T-S fuzzy model is used to approximate the dynamics of nonlinear processes, local linear model of the nonlinear system can be derived from the fuzzy rule eonsequents in a straight forward way. To improve the predictive control perfor- mance multi-step hnearization around the working points within the prediction horizon is investigated and a multi- step fuzzy predictor is derived. Since the T-S fuzzy model can be treated as a linear time-vary system, the nonlin- ear program in the model predictive control turns into a linear quadratic problem. Simulation results on a MIMO liq- uid level process show the proposed approach using multi-step linearization of the T-S fuzzy model performs better than the one with single-step linearization.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112