检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江工业大学信息工程学院浙江省嵌入式系统联合重点实验室,杭州310014
出 处:《化工自动化及仪表》2009年第2期29-33,共5页Control and Instruments in Chemical Industry
基 金:国家"863"计划项目(2006AA04Z178);国家自然科学基金资助项目(60604017)
摘 要:由于聚丙烯生产是一个大量参数相互耦合的强非线性过程,使得传统的机理建模受到一定的限制。提出基于典型相关分析和数据自回归处理的BP神经网络软测量建模,通过可测变量来推知聚丙烯熔融指数。应用典型相关分析选择与输出熔融指数关系较大的独立输入变量,数据自回归处理校正一系列带有误差的量测数据,而BP神经网络用来刻画过程的非线性特征。最后,将提出的算法应用到聚丙烯大型生产工艺中进行熔融指数的预报建模并进行实例仿真,仿真结果表明该算法有较强的建模精度。Propylene polymerization is a highly nonlinear process with a lot of variables correlated, which limits the use of traditional first principle modeling. A soft-sensor architecture based on back propagation (BP)neural networks combining canonical correlation analysis as well as data auto-regression was proposed to infer melt index (MI) from other given process variables. Canonical correlation analysis was carried out to select the independent variables which have much contact with MI, data auto-regression was introduced to acquire corrected data, and BP networks were used to characterize the nonlinearity. Finally, the algorithm is applied to the production process of polypropylene and the results of emulator indicate the excellent model accuracy of the algorithm.
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249