一种基于松弛条件的改进模糊线性鉴别分析算法  被引量:1

Improved Fuzzy Discriminant Analysis Algorithm Based on the Relaxed Condition

在线阅读下载全文

作  者:宋晓宁[1,2] 郑宇杰[3] 杨静宇[1] 杨习贝[1] 

机构地区:[1]南京理工大学计算机科学与技术学院603教研室,南京210094 [2]江苏科技大学计算机科学与工程学院,镇江212003 [3]中国电子科技集团公司第28研究所,南京210007

出  处:《计算机科学》2009年第9期178-181,共4页Computer Science

基  金:863高技术研究发展计划(2006AA01Z119);国家自然科学基金(60632050;60503026;60572034)资助

摘  要:对模糊线性鉴别分析算法进行了本质研究。通过采用模糊k近邻(FKNN)方法得到相应的样本分布隶属度信息,同时考虑到离群样本对整个分类结果的不利影响,提出了一种松弛的归一化条件,将每一个样本的隶属度根据它对散布矩阵重定义所做的贡献按照松弛条件融入到特征抽取的过程中,从而得到完整有效的模糊样本特征向量集。该算法同传统模糊线性鉴别分析方法相比有效地解决了小样本和离群样本问题,在ORL和NUST603人脸数据库上的实验结果验证了它的有效性。A study was made on the essence of fuzzy Fisher discriminant analysis (FLDA) algorithm in this paper. A reformative FLDA algorithm based on the fuzzy k-nearest neighbor (FKNN) was implemented to achieve the distribution information of every original sample represented with fuzzy membership degree and was incorporated into the redefinition of the scatter matrices. Furthermore, considering the fact that the outlier samples have some adverse influence to the classification result, a relaxed normalized condition in the fuzzy membership degrees was proposed simultaneously, therefore, the limitation from the outlier samples was overcome. Unlike the conventional FLDA algorithm, the proposed method computes its discriminant vectors with fuzzy membership degree from every training sample, which is theoretically effective to address the small size sample and outlier samples problems. Extensive experimental studies conducted on the ORL and NUST603 face images show the effectiveness of the proposed algorithrn.

关 键 词:模糊线性鉴别分析 特征抽取 小样本问题 离群样本 人脸识别 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象