检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学信息与通信工程学院,哈尔滨150001 [2]黑龙江科技学院数力系,哈尔滨150027
出 处:《控制与决策》2009年第9期1406-1411,共6页Control and Decision
基 金:黑龙江省博士后基金项目(3236301199);哈尔滨工程大学校科研基金项目(002080260735)
摘 要:提出一种改进的基于多种群协同进化的微粒群优化算法(PSO).该算法首先利用免疫算法实现解空间的均匀划分,增加了算法稳定性和全局搜索能力.在运行过程中,通过种群进化信息生成解优胜区域,指导变异生成的微粒群向最优解子空间逼近,提高算法逃出局部最优的能力.将此算法与PSO算法和多种群协同进化微粒群算法进行比较,数据实验证明,该算法不仅能有效地克服其他算法易陷入局部极小值的缺点,而且全局收敛能力和稳定性均有显著提高.A particle swarm optimization algorithm based on multi-species cooperative evolution is presented. In this approach, the result space separation based on immune system is introduced into the particle swarm optimization (PSO) initial step, which reinforces the stability and global exploration ability of the PSO algorithm. In the evolution process, the best result value space is generated by using the multi-species evolution information, which is explored to induce the new particle swarm generated by stochastic mutation operation to fly into the better result space, which can avoid the premature convergence and speed up the convergence. The comparison of the performance of the proposed approach with that of traditional PSO algorithm and other multi-species cooperative particle swarm optimization algorithms is experimented. The experimental results show that the proposed method can not only effectively solve the premature convergence problem, but also significantly speed up the convergence and improve the stability.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185