检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:艾尼瓦尔.努尔买买提
出 处:《长春师范学院学报(自然科学版)》2009年第2期32-35,共4页Journal of Changchun Teachers College
摘 要:为了有效地组织和分析大量WEB信息,本文设计了WEB分类发掘系统。BP网络应用广泛,但也有许多不足之处。因此,提出了用RBFNN(径向基函数神经网络)分类WEB页面信息的方法。分类系统框架主要包括RBF(径向基函数)分类器、评估模型及数据预处理。用Macro-Fi作为分类效果的评估标准,实验结果证实,RBFNN分类器比BPNN分类器更有效、更准确。并且用相同的分类器对不同类进行分类,分析了不同分类精度。To effectively organize and analyze massive Web information, this paper has designed a Web classification mining system. BP network has lots of disadvantages, so this paper has proposed a method that uses RBFNN (Radial Basis Function Neural Network) to classify the text information in Web pages. In this paper, the model of classification system mainly includes RBF (Radial Basis Function) classifier,estimate model and data pretreatment. Using Macro- Fi as evaluation standard of classification performance, experimental results can verify that RBFNN classification has better classification accuracy and is more efficient than BPNN algorithm. This article also analyzes the results of different classification accuracy, using the same classifier to classify different classes.
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.227.102.59