常微分方程的级数解法探源  

On the Origin of the Method of Series for Ordinary Differential Equation Solution

在线阅读下载全文

作  者:任瑞芳[1,2] 

机构地区:[1]山西财经大学,山西太原030006 [2]西北大学数学与科学史研究中心,西安西安710127

出  处:《数学的实践与认识》2009年第17期60-65,共6页Mathematics in Practice and Theory

基  金:全国教育科学"十五"规划重点课题国家一般课题(BHA050023)

摘  要:级数法是求解常微分方程最有效的方法之一.牛顿是第一位真正开始求解微分方程的数学家,级数法是其采用的第一种求解方法.在研读牛顿的微积分论文《流数法与无穷级数》基础上,探讨级数法形成的根源,揭示其思想方法对今日微分方程课程教与学的启迪作用以及对创立和发展微分方程学科的重要理论意义.Method of series is one of the most effective approaches in seeking a solution of ordinary differential equations. In this aspect Newton was the first mathematician and method of series is the first means he used. On studying in his outstanding literature on method of series and theory of fluxions, the origin of the method of series is discussed. The enlightenment effect of method of series in teaching and studying in differential equations and its important role for founding and developing of the subject of differential equation are displayed.

关 键 词:牛顿 微分方程 级数法 

分 类 号:O175.1[理学—数学] TU473.1[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象