检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄安贻[1] 廖绪兵[1] 朱志宏[2] 关密生[2]
机构地区:[1]武汉理工大学机电工程学院,湖北武汉430070 [2]新疆油田分公司勘探开发研究院,新疆克拉玛依834000
出 处:《自动化仪表》2009年第9期21-23,共3页Process Automation Instrumentation
摘 要:抽油机所用电动机的输出扭矩是分析抽油机动态平衡的重要参数。针对传统测量方法存在成本高、安装困难、可靠性差等不足,提出了基于抽油机系统数学模型和BP神经网络模型这2种软测量扭矩的方法。研究结果表明,这2种方法克服了传统测量方法的不足,并获得了较高的测量精度。由于这2种方法具有各自的特点,因此,可以应用于不同要求的抽油机扭矩测量系统中。The output torque of the motor used in oil pumping unit is an important parameter for analyzing dynamic balance of the oil pumping unit. Aiming at the disadvantages of traditional measurement method, such as high cost, difficult installation, and poor reliability, etc. , two of the soft sensing methods based on mathematical model of the oil pumping system and BP neural network are proposed. The results of research indicate that these two methods overcome the disadvantages of traditional measuring methods, and offer higher measurement accuracy. These two methods possess their own features, thus they can be used in torque measuring systems with different requirements.
分 类 号:TH113[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185