基于二次Renyi熵的非迭代最小二乘支持向量机预测模型  被引量:4

Prediction model of noniterative least squares SVM based on quadratic Renyi-entropy

在线阅读下载全文

作  者:赵冠华[1,2] 

机构地区:[1]天津大学管理学院,天津300072 [2]山东财政学院会计学院,济南250014

出  处:《计算机应用》2009年第10期2751-2754,2757,共5页journal of Computer Applications

基  金:国家自然科学基金资助项目(70840018);山东省科技攻关计划资助项目(2008GG30009005);山东省软科学研究计划资助项目(2008RKA223)

摘  要:将二次Renyi熵应用于企业财务困境预测,提出了一种基于二次Renyi熵的最小二乘支持向量机(LS-SVM)模型。通过将该模型与传统的LS-SVM模型、标准SVM模型以及与二项Logistic回归模型、BP神经网络(BP-ANN)的分析比较,表明了该模型无论是训练样本的数量还是运算时间,都显著优于其他模型,且有较好的稳定性。实证分析表明,将二次Renyi熵引入企业财务困境预测领域是成功的,同时,通过对原始输入变量进行显著性检验、因子分析处理,减少了输入变量个数,预测正确率达到了88%,说明因子分析法是有效的。A learning algorithm of noniterative Least Squares Support Vector Machine (LS-SVM) based on quadratic Renyi-entropy was propused in the article by using quadratic Renyi-entropy in financial distress prediction. By comparing the model of LS-SVM based on quadratic Renyi-entropy with traditional LS-SVM, standard SVM, binomial Logistic regression model and Back Propagation Artificial Neural Network (BP-ANN), this paper concluded that either the number of training samples or the computing time, the model of noniterative I,S-SVM based on quadratic Renyi-entropy is remarkably better than the others, as well as the stability. Indicated by demonstration analysis, the model of noniterative LS-SVM based on quadratic Renyi-entropy is successful in financial distress prediction. Meanwhile, although the number of input variable has been reduced by conspicuity test and gene analysis, the accuracy rate of the prognosis still reached 88%. In a word, the factor analysis method has been successfully proved in the article.

关 键 词:二次Renyi熵 最小二乘支持向量机 标准支持向量机 非迭代 因子分析 财务困境预测 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象