检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江苏大学理学院,镇江212013
出 处:《物理学报》2009年第9期6006-6015,共10页Acta Physica Sinica
基 金:国家自然科学基金(批准号:10872080;10602020)资助的课题~~
摘 要:讨论了快慢两时间尺度下超混沌Lorenz系统原点的稳定性问题,分析了原点的Hopf分岔,包括Hopf分岔的存在性,分岔方向以及分岔周期解的稳定性等问题,并用数值例子对所得到的结果加以验证.在一定的参数条件下,快慢系统会产生对称簇发并能达到超混沌状态.基于快慢分析法,揭示了对称簇发中沉寂态与激发态相互转迁的不同分岔模式,并进一步分析了耦合强度对慢过效应的影响.The stability of the origin of the hyperchaotic Lorenz system with two time scales is investigated. The characteristics of Hopf bifurcation from the origin, including the existence condition, the direction as well as the stability of bifurcating periodic solutions are discussed in detail, which can be demonstrated by the numerical simulations. With certain parameter, the fast-slow system can exhibit symmetric bursting and further lead to hyperchaotic movement. Based on the method of slow-fast analysis, different bifurcation forms between quiescent state and spiking has been revealed and the influence of coupling strength on slow passage effect is disscussed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249