改进的分形算法在弱小目标检测中的应用  被引量:5

Application of improved fractal algorithm in small target detection

在线阅读下载全文

作  者:王鑫[1] 唐振民[1] 

机构地区:[1]南京理工大学计算机科学与技术学院,江苏南京210094

出  处:《系统工程与电子技术》2009年第9期2071-2075,共5页Systems Engineering and Electronics

摘  要:针对单帧图像中的弱小目标检测问题,提出了一种改进的基于分形的快速检测方法。该方法首先利用图像的局部熵信息对目标进行粗定位,以得到一个包含目标的感兴趣区域,然后利用分形理论构造该区域的分维像,最后对分维像采用自适应阈值分割即可将弱小目标精确检测出来。与传统分形算法相比,提出的改进算法包含粗定位和细定位两部分,它将分形算法要处理的区域缩减到局部熵所估计的小范围内,从而克服了传统分形方法计算量大、抗噪性差的缺点。仿真实验结果表明,该方法能够稳健、快速、有效地检测弱小目标。An improved fast method based on fractal theory is presented for small and weak target detection in a single-frame image. The algorithm firstly uses the local entropy information to locate the target coarsely, and then a region of interest (ROD containing the small target is obtained. Secondly, a fractal dimension image of this region is constructed based on the fractal theory. Finally, self-adaptive threshold segmentation is used for the fractal dimension image to get the exact detection result. Compared with the traditional fractal algorithm, the presented method is divided into two parts: coarse location and accurate location. The region to be processed by the fractal algorithm is reduced to a small range that is estimated by local entropy, thus overcoming the defect of huge computational cost and poor anti-noise capability of traditional fractal methods. The experimental results prove that the proposed method is robust, fast and effective for small and weak target detection.

关 键 词:弱小目标检测 分形 局部熵 感兴趣区域 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象