检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学计算机科学与技术学院,江苏南京210094
出 处:《系统工程与电子技术》2009年第9期2071-2075,共5页Systems Engineering and Electronics
摘 要:针对单帧图像中的弱小目标检测问题,提出了一种改进的基于分形的快速检测方法。该方法首先利用图像的局部熵信息对目标进行粗定位,以得到一个包含目标的感兴趣区域,然后利用分形理论构造该区域的分维像,最后对分维像采用自适应阈值分割即可将弱小目标精确检测出来。与传统分形算法相比,提出的改进算法包含粗定位和细定位两部分,它将分形算法要处理的区域缩减到局部熵所估计的小范围内,从而克服了传统分形方法计算量大、抗噪性差的缺点。仿真实验结果表明,该方法能够稳健、快速、有效地检测弱小目标。An improved fast method based on fractal theory is presented for small and weak target detection in a single-frame image. The algorithm firstly uses the local entropy information to locate the target coarsely, and then a region of interest (ROD containing the small target is obtained. Secondly, a fractal dimension image of this region is constructed based on the fractal theory. Finally, self-adaptive threshold segmentation is used for the fractal dimension image to get the exact detection result. Compared with the traditional fractal algorithm, the presented method is divided into two parts: coarse location and accurate location. The region to be processed by the fractal algorithm is reduced to a small range that is estimated by local entropy, thus overcoming the defect of huge computational cost and poor anti-noise capability of traditional fractal methods. The experimental results prove that the proposed method is robust, fast and effective for small and weak target detection.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.38.11