检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南工业大学理学院,郑州450001 [2]湖北大学数学系,武汉430062
出 处:《中国科学(A辑)》2009年第10期1187-1210,共24页Science in China(Series A)
基 金:国家自然科学基金(批准号:10671058);湖北省教育厅重大项目资助项目
摘 要:确定了广义超特殊p-群G的自同构群的结构.假设|G|=p2n+m,|ζG|=pm,其中n1,m2,(1)当p是奇数时,记AutGG={α∈AutG|α在G上作用平凡},则(i)AutGGAutG,AutG/AutGG=~Zp1;(ii)如果G的幂指数是pm,那么AutGG/InnG=~Sp(2n,p)×Zpm1;(iii)如果G的幂指数是pm+1,那么AutGG/InnG=~(KSp(2n2,p))×Zpm1,其中K是p2n1阶超特殊p-群.特别地,当n=1时,AutGG/InnG=~Zp×Zpm1.(2)当p=2时,(i)如果G的幂指数是2m,那么OutG=~Sp(2n,2)×Z2×Z2m2.特别地,当n=1时,|AutG|=3·2m+2,AutG的Sylow子群都不是正规子群,并且AutG的Sylow2-子群都同构于HK,其中H=Z2×Z2×Z2×Z2m2,K=Z2.(ii)如果G的幂指数是2m+1,那么OutG=~(ISp(2n2,2))×Z2×Z2m2,其中I是一个22n1阶初等Abel2-群.特别地,当n=1时,|AutG|=2m+2并且AutG=~HK,其中H=Z2×Z2×Z2m1,K=Z2.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222