检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐志洁[1]
出 处:《计算机工程与应用》2009年第26期176-178,共3页Computer Engineering and Applications
基 金:国家自然科学基金No.60573158~~
摘 要:提出了一种强化支持向量机方法,将支持向量机与强化学习结合,逐步对未知类别标记样本进行访问,根据对该样本分类结果正确与否的评价标记访问点的类别,并对当前的分类器进行更新,给出了更新分类器的规则。对模拟数据和真实数据分别进行了实验,表明该方法在保证分类精度的同时,大大降低了对已知类别标记的训练样本的数量要求,是处理已知类别标记样本获取困难的多类分类问题的一种有效的方法。In the present study a reinforcement support vector machine is developed for muhiclass classification.Support vector machine and reinforcement learning are combined.Support vector machine classifier is trained on labeled data set.The unlabeled instance is queried according to querying strategy, and according to the critic of right or wrong about the classification result of the queried instances,the classifier is updated.The method is evaluated on a synthetic data set,as well as on real data sets,and it is shown to be valuable for the problem of multiclass classification in which the labeled instances are difficult to obtain.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15