检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]韩山师范学院数学与信息技术系,广东潮州521041 [2]广东工业大学计算机学院,广东广州510090
出 处:《计算机应用与软件》2009年第10期27-29,共3页Computer Applications and Software
基 金:国家自然科学基金项目(30472122)
摘 要:传统的神经网络集成中各子网络之间的相关性较大,从而影响集成的泛化能力。为此,提出用负相关学习算法来训练神经网络集成,以增加子网络间的差异度,从而提高集成的泛化能力。并将基于负相关学习法的神经网络集成应用于中医舌诊诊断,以肝病病证诊断进行仿真。实验结果表明:基于负相关学习法的神经网络集成比单个子网和传统神经网络集成更能有效地提高其泛化能力。因此,基于负相关神经网络集成算法的研究是可行的、有效的。The pertinence between individual subnetworks is large in traditional neural network ensembles, this affects the generalization ability of the ensembles. In the paper it presents to train the neural network ensembles with negative correlation learning algorithm for increasing the difference between the individual subnetworks so as to improve the generalization ability of the network ensembles. The neural networks ensemble based on negative correlation learning algorithm is applied to tongue inspection diagnosis of TCM and the diagnosis of the hepatic disease symptom is selected as its simulation. The experimental result demonstrates that the neural networks ensembles algorithm based on negative correlation/earning is better in generalization ability than that of individual subnetwork and traditional neural network ensembles. So the research on neural networks ensembles algorithm based on negative correlation is feasible and effective.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15