检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《大学数学》2009年第4期113-115,共3页College Mathematics
基 金:广西科学基金资助项目(0832101)
摘 要:给出Leray-Schauder不动点定理的一个新证明.我们首先给出集值映射的焊接引理,利用集值映射的焊接引理和Kakutani不动点定理证明Leray-Schauder不动点定理,并证明Leray-Schauder不动点定理与Brouwer不动点定理等价.A new proof of the Leray-Schauder fixed point theorem is established in this paper.By the set valued version of pasting lemma and the Kakutani fixed point theorem,we prove the Leray-Schauder fixed point theorem.The equivlence between the Brouwer fixed point theorem and the Leray-Schauder fixed point theorem is established.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.247.39