孤立点检测改进径向基神经网络动态预测模型  

Outliers detection for improving dynamic prediction model created by radial basis function neural network

在线阅读下载全文

作  者:梁斌梅[1] 

机构地区:[1]广西大学数学与信息科学学院,南宁530004

出  处:《计算机工程与应用》2009年第28期52-54,82,共4页Computer Engineering and Applications

基  金:广西教育厅科研项目资助No[2006]026~~

摘  要:提出一种基于凝聚层次聚类消除孤立点的新方法,借助聚类树识别孤立点。去除孤立点后,利用RBF网络建立动态预测模型,实验结果表明,网络的训练和泛化性能较消除孤立点前有明显提高。说明凝聚层次聚类方法用在孤立点检测方面是有效可行的,消除孤立点后建立的模型收敛速度快,泛化能力更优。Propose a new agglomerative hierarchical clustering based method to eliminate outliers,with clustering tree to identify outliers.After removing the outliers,build a dynamic prediction model by RBF network,and the experimental results show that the training and generalization performance are markedly improved,which means the agglomerative hierarchical clustering method is effective and workable for outlier detection.After the elimination of outliers,the model shows faster converging speed and higher generalization ability.

关 键 词:孤立点检测 凝聚层次聚类 径向基神经网络 预测 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象