检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东华大学应用数学系,上海200051 [2]同济大学数学系,上海200092
出 处:《数学物理学报(A辑)》2009年第5期1175-1186,共12页Acta Mathematica Scientia
基 金:国家自然科学基金(10571023)资助;国家自然科学基金(10671 144);973计划(2007CB814903)资助
摘 要:该文考虑抑制剂作用下肿瘤生长的模型.假设肿瘤是球对称的,其表面为运动边界,用函数r=R(t)表示.既然多细胞肿瘤扁球体(MTS)通常作为肿瘤生长的体外模型,在实验室能够被观察和控制,因此研究如下反问题:根据观察到的MTS动态增长(即给定R(t)),来确定抑制剂的参数.运用极大值原理,作者证明了该抛物反问题解的唯一性.进一步,用最优控制框架来重构模型中的抑制剂参数,证明了最优控制问题解的存在性,并推导了最优控制满足的最优性必要条件.In this paper,the authors consider a model of tumor growth in the presence of inhibitors.The tumor is assumed to be spherically symmetric and its surface is a moving boundary denoted by a function r = R(t).Since multicellular tumor spheroids(MTS) are routinely used as in vitro models of cancer growth and they can be observed and controlled in the laboratory,the authors study the following inverse problem:Given observed dynamics of MTS growth(i.e.,given R(t)),the authors determine the inhibitor's parameter. The authors first prove the uniqueness of solution to the inverse parabolic problem by the maximum principle. Then the authors develop an optimal control framework for studying the reconstruction of the inhibitor's parameter. The authors prove the existence of solution to the optimal control problem, and the authors derive the necessary optimality conditions which have to be satisfied by each optimal control.
分 类 号:O211.4[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117