检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡中波[1] 王曙霞[2] 熊盛武[3] 苏清华[1]
机构地区:[1]孝感学院数学与统计学院,湖北孝感432000 [2]孝感学院计算机科学学院,湖北孝感432000 [3]武汉理工大学计算机学院,武汉430070
出 处:《计算机工程与应用》2009年第31期211-214,217,共5页Computer Engineering and Applications
基 金:国家自然科学基金No.60572015;No.40701153;国家重点基础研究发展规划(973)No.2004CCA02500;武汉市科技攻关项目(No.200770834318);武汉市国际交流项目(No.200770834318)~~
摘 要:结合基于可行性规则的约束处理技术,构造了一个求解约束优化问题的自适应杂交差分演化模拟退火算法。该算法以差分演化算法为基础,用模拟退火策略来增强种群的多样性,用一个基于可行性规则的约束处理技术来处理不等式约束,且自适应化关键控制参数,避开人为控制参数的困难。在标准测试集上的实验结果表明该算法的有效性,与同类算法的比较表明了该算法的优越性。A self-adaptive hybrid differential evolution with simulated annealing algorithm using a constraint-handling approach based on feasibility rules,termed SahDESAfr,is proposed to solve real-parameter constrained optimization problems.In the SahDESAfr algorithm,the choice of learning strategy and several critical control parameters are not required to be pre-specified.During evolution,the suitable learning strategy and parameters setting are gradually self-adapted according to the learning experience.A simple constraint-handling approach based on feasibility rules is employed to deal with inequation constraints.The performance of the SahDESAfr algorithm is evaluated on a set of well-know constrained optimization problems commonly adopted in the specialized literature.The performance of the SahDESAfr is evaluated on the set of 13 benchmark functions.The proposed approach is compared with respect to two techniques that are representative of the state-of-the-art in the area.Comparative study exposes the SahDESMr as a competitive algorithm for constrained optimization.
关 键 词:差分演化算法 模拟退火算法 自适应技术 约束优化 约束处理技术
分 类 号:TP301[自动化与计算机技术—计算机系统结构] O213[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.10.21