协同进化算法及在软测量建模中的应用  

Cooperative evolutionary algorithm and its application in soft sensor modeling

在线阅读下载全文

作  者:卜艳萍[1,2] 俞金寿[1] 

机构地区:[1]华东理工大学自动化研究所,上海200237 [2]上海交通大学技术学院,上海201101

出  处:《计算机工程与应用》2009年第31期241-244,共4页Computer Engineering and Applications

摘  要:综合基本微粒群优化算法(Particle Swarm Optimization,PSO)和模拟退火(Simulated Annealing,SA)算法,提出了一种新型的协同进化方法(SAPSO)。通过PSO和SA两种算法的协同搜索,可以有效地克服微粒群算法的早熟收敛。用SAPSO训练神经网络,并将其用于延迟焦化装置粗汽油干点和高压聚乙烯熔融指数的软测量建模。与几种常见建模方法比较,结果表明该软测量模型具有更高的测量精度和更好的泛化性能,能够满足现场测量要求。A novel cooperative evolutionary algorithm (SAPSO) is proposed by taking advantage of both Particle Swarm Optimization (PSO) and Simulated Annealing (SA) algorithm.It can validly overcome the premature problem in PSO through cooperative search between PSO and SA.Then,SAPSO is employed to train artificial neural network and applied to soft-sensing of gasoline endpoint of delayed coking plant and melt-index of High Pressure Low-density Polyethylene yield.Its performance is compared with existing soft sensor modeling methods.The simulation results show that this model has higher measuring preeision as well as better generalization ability, and can satisfy the need of spot measurement.

关 键 词:微粒群优化算法 模拟退火 神经网络 软测量 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象