基于Voronoi图与蚁群算法的UCAV航路规划  被引量:8

Path Planning for UCAV Based on Voronoi Diagram and Ant Colony Optimization

在线阅读下载全文

作  者:何艳萍[1,2] 张安[1] 刘海燕[2] 

机构地区:[1]西北工业大学电子信息学院,西安710072 [2]第二炮兵工程学院,西安710025

出  处:《电光与控制》2009年第11期22-24,54,共4页Electronics Optics & Control

基  金:高校博士点基金项目资助(20060699026);航空科学基础基金项目资助(20060553008)

摘  要:提出一种基于Voronoi图和蚁群优化算法(ACO)的无人作战飞机航路规划的方法。首先根据已知威胁源建立威胁源的Voronoi图,并构建了起始点、目标点与威胁场的Voronoi图赋权有向图,从而建立了无人机搜索路径的集合,结合初始集合,然后给出无人作战飞机航路规划的具体实现过程,最后对UCAV在多种威胁环境下的航路规划进行了仿真实验,仿真结果表明这种航路规划方法是可行和有效的。A method based on Voronoi diagram and ant colony optimization was proposed for path planning of Uninhabited Combat Air Vehicle(UCAV).First,the Voronoi diagram of threats was created according to the known threat sources,and the Voronoi weighted direction diagram of start point,target point and threat field was created.Then,a set of UCAV searching paths was created,and the realization process of path planning for UCAV was given based on the initial set.Simulations were carried out on path planning of UCAV under various threatening environment. Simulation results show that the proposed method is effective and feasible.

关 键 词:UCAV 航路规划 VORONOI图 蚁群优化算法(ACO) 

分 类 号:V279[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象