多层并行决策融合的贝叶斯方法  

Bayesian Method and Its Application to Multiple Level Decision Fusion with Distributed Sensors

在线阅读下载全文

作  者:柳会珍[1,2] 杨位钦[1,2] 

机构地区:[1]北京理工大学应用数学系 [2]北京理工大学自动控制系

出  处:《北京理工大学学报》1998年第5期536-540,共5页Transactions of Beijing Institute of Technology

摘  要:研究多层并行决策融合系统的决策规则并探讨该决策规则的可行性。方法利用贝叶斯(Bayes)最小风险准则给出各层融合单元的决策规则,选取不同的损失函数,讨论它们对系统性能的影响。结果损失函数中虚警损失和漏检损失的比值不同导致整个系统的性能(虚警率和检测率)不同,与N-P准则相比较,贝叶斯方法能够充分利用先验知识和样本知识。结论所给出的决策规则使系统性能更完善且该决策规则的门限容易计算,在处理决策融合的实际问题中有很大的灵活性。Aim To study the decision rules in the structure of multiple level decision fusion and examine the feasibility of these decision rules. Methods The decision rules for fusion units in every level were provided by use of the minim- um Bayesian risk criterion. Different loss functions were used to discuss their effect on the system performance. Results Different ratios of the loss of false alarm to the loss of non- detection resulting in different system performance. Compared to N- P criterion, Bayesian method can make use of the prior knowledge and the sample knowledge. Conclusion The system performance become more sound and it is easier to calculate the thresholds of the decison rules. Bayesian method has great flexibility in dealing with the practical problems about decision fusion.

关 键 词:决策融合 贝叶斯方法 信息融合 并行结构 传感器 

分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置] O212.5[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象