检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄茜[1] 潘丹[1] 肖诗铁[2] 张海[3] 罗干英[1]
机构地区:[1]广州华南理工大学电子与通信工程系,广州510641 [2]华南理工大学应用化学系 [3]华南理工大学工业装备与控制工程系
出 处:《华南理工大学学报(自然科学版)》1998年第10期120-125,共6页Journal of South China University of Technology(Natural Science Edition)
基 金:华南理工大学自然科学基金!970461
摘 要:本文针对难以通过在线测温实现等效硫化控制的情况,在确定硫化条件的直接测温实验基础上,提出了用神经网络模型预测实际生产过程中硫化制品内部温度的方法.在该方法中将所测温度值作为样本提供给神经网络学习,温度采集时刻及易测外部温度作为网络输入,输出值则是在硫化时制品难测温点处不同时刻的内温.神经网络通过学习取得了良好的效果,网络输出的温度值将成为等效硫化计算和硫化质量智能控制的有价值的依据.The ncrharm thermometry is a difficult problem in equivalent vulcanization when thick products are produced. Based on the experiment in which the requirement of vulcanization is decided by directly measuring the temperature, this paper proPOses a method to construct a model ofneural networks. In the proPOsed method, the collecting temperature time and the outside temperature are provided to neural networks as the input patterns while the inside temperature of the product in different spots are provided as the 0utput patterns. Application samples have proved that the proPOsed method is both effective and practical. The output temperature of the neural networks can be used as an valuable evidence in the calculati0n of equivalent vulcanization as well as in the intelligent control of curing quality.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.45