检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学模式识别与智能控制研究所,陕西西安710071
出 处:《光学学报》2009年第11期3036-3042,共7页Acta Optica Sinica
基 金:国家自然科学基金(60572151);教育部科学技术研究重点项目(03154)资助项目
摘 要:提出了一种新的基于模糊分类的红外云层背景弱小目标检测方法。根据红外成像的特点,将红外云层背景弱小目标图像分为三类:边缘类、净空及云中类、弱小目标类;对不同类别图像进行分析,建立了分类模型,并定义了方向特征矢量,将其作为类别的特征矢量;根据模糊分类的理论,定义了类相似系数来判别图像中每一个像素的类别属性,保留弱小目标类的像素点完成检测。实验结果表明,该方法能够对红外弱小目标图像中不同类型的区域进行准确的分类,从而较好的实现了对低信杂比的复杂云层背景图像中的弱小目标检测。A new method is proposed to detect infrared small and dim targets in cloud cluster image based on fuzzy classification. Firstly, according to the infrared imaging principles, dim and small targets in cloud cluster image can be divided into three classes, which are the edge class, the inner cloud and clear sky class, the target class. By analyzing different classes, the classified models for each class are established. And then four-direction pixel feature vector is defined to describe different classes. Finally, based on the fuzzy classification theory, class correlation coefficient is defined to classify each pixel of the infrared image. Experimental results show that the proposed method can separate dim and small targets from the cluster in low signal-to-clutter ratio (SCR) infrared cloud images efficiently.
关 键 词:图像处理 云层背景图像 模糊分类 类别特征 红外弱小目标 目标检测
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90