基于自组织特征映射神经网络的储粮害虫分类方法研究  

Study on Stored-grain Pests Classification Based on Self-organizing Feature Map Neural Network

在线阅读下载全文

作  者:梁斌梅[1] 

机构地区:[1]广西大学数学与信息科学学院,广西南宁530004

出  处:《安徽农业科学》2009年第32期16156-16158,共3页Journal of Anhui Agricultural Sciences

基  金:广西教育厅科研项目([2006]026)

摘  要:提出了基于自组织特征映射(SOM)神经网络的害虫分类方法。该方法能将任意维输入模式在输出层映射成一维或二维离散图形,并保持其拓扑结构不变,而且无需监督,可实现对输入模式自动分类。分析了SOM网络基本工作原理,并将之用于害虫分类模型的建立中。结果表明,该方法能有效地对害虫进行分类,比BP神经网络分类精确度高、分类结果的可解释性更好。A classification method based on self-organizing feature map (SOM) neural network was proposed. The high-dimensional input space could be projected into one-dimension or two-dimension discrete space with the method. The classification process didn' t need supervision and could make input space to be classified automatically. The working principle of SOM network was analyzed, and the SOM network was used to build the stored-grain pests classification model. Results showed that this method could classify pests effectively, and showed higher classification accuracy and better understandability than BP neural network.

关 键 词:自组织特征映射 神经网络 储粮害虫 分类 

分 类 号:S126[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象