检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:窦贤明[1] 杨永国[1] 徐伟伟[1] 靖凤伟[1]
机构地区:[1]中国矿业大学资源与地球科学学院,江苏徐州221116
出 处:《中国煤炭地质》2009年第10期37-38,66,共3页Coal Geology of China
摘 要:为避免BP神经网络极易陷入局部解的问题,针对遗传算法具有全局寻优的特点,提出了用遗传算法优化BP神经网络预测方法,并以刘桥二矿为例,对其矿井涌水量进行了预测。首先选取刘桥二矿区的2005年3月至2006年12月的矿井涌水量数据进行分析,然后使用遗传算法优化BP网络的初始权值和阈值,最后使用BP神经网络进行训练。将其成果与纯BP网络算法进行比较,结果表明:遗传算法优化BP神经网络的预测方法的预测精度高于纯BP网络算法,将其应用于矿井涌水量预测是有效可行的。To avoid the BP neural network common problem of trapped into a local solution and take advantage of the genetic algorithm's global optimization, a BP network optimized by genetic algorithm approach has proposed to predict mine inflow. To take the Liuqiao No.2 coalmine as an example, analyzed mine inflow during March 2005 to December 2006. Firstly, the initialized weights and thresholds of BP neural network were optimized with genetic algorithm, and the network was trained by modifying the weights and thresholds. Finally, this method was compared with pure BP network algorithm. The results show that the prediction accuracy of this method is higher than that of pure BP network algorithm and it is feasible and effective to apply BP network optimized by genetic algorithm approach to predict mine inflow.
分 类 号:TD742[矿业工程—矿井通风与安全] O242[理学—计算数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49