检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与设计》2009年第22期5218-5220,共3页Computer Engineering and Design
基 金:北京市教育委员会科技发展计划基金项目(KM200710028017)
摘 要:热风炉燃烧系统是复杂多变量系统,基于最优控制策略,对具有耦合作用的多变量热风炉燃烧系统进行解耦。通过引入神经网络环节,将强耦合多变量系统转化成多个独立的单变量系统,对每个单变量系统进行预测函数控制,实现热风炉燃料流量的最优控制和拱顶温度及废气温度的平稳控制。解耦控制采用前馈补偿器解耦,解耦补偿器采用BP神经网络结构。现场实际应用结果表明,该控制策略具有较好的动态跟踪特性,能满足复杂多变量控制系统的实时控制要求。The combustion system of hot stove is a complex and multivariable system. The multivariable combustion system of hot stove with coupling relation is decoupled based on optimization control strategy. The multivariable system with strong coupling quality is changed into several independent single variable system by neural network sector. The predicting function control is conducted in every single variable system. The optimization control of hot stove fuel and stable control for dome temperature and waste gas temperature are realized. Feed forward compensator decoupling is used in the decoupling control. The BP neural network structure is adopted in the de- coupling compensator. The practical application result shows that the control strategy has better dynamic tracking property and can meet the requirements of real time control for complex multivariable control system.
分 类 号:TP389.1[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28