检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用研究》2009年第12期4690-4693,共4页Application Research of Computers
摘 要:P2P流量逐渐成为互联网流量的重要组成部分,精确分类P2P流量对于有效管理网络和合理利用网络资源都具有重要意义。近年来,利用机器学习方法处理P2P流量分类问题已成为流量识别领域的一个新兴研究方向。利用决策树中的C4.5算法和P2P流量的特征属性来构建决策树模型,进而完成P2P流量分类问题。实验结果表明,基于决策树模型的方法能有效避免P2P网络流分布变化所带来的不稳定性;与SVM(support vectormachine,支持向量机)、NBK(na ve Bayes using kernel density estimation,改进的朴素贝叶斯)方法相比,其平均分类准确率能提高至少3.83个百分点。P2P traffic has become one of the most significant portions of the network traffic. Accurate identification of P2P traffic makes great sense for efficient network management and reasonable utility of network resources. In recent years, P2P traffic classification using machine learning has been a new direction in traffic identification. This paper proposed a new method based on decision-tree model, using CA. 5 and P2P traffic characteristic. The experiments show this method can effectively avoid the instability of P2P traffic distribution change. Compared with SVM and NBK method, the average of classified precision can increase at least 3.83 percentage points.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117