完备流形上射线的密度函数与拓扑  

On the density function of rays and topology of complete manifolds

在线阅读下载全文

作  者:李义年[1] 吴绪权[1] 

机构地区:[1]武汉理工大学理学院,武汉430063

出  处:《华中师范大学学报(自然科学版)》2009年第4期560-562,共3页Journal of Central China Normal University:Natural Sciences

基  金:国家自然科学基金项目(10871152)

摘  要:借助于临界点理论和亏函数的估计,得到了非负截曲率以及截曲率有下界的完备非紧流形微分同胚于欧氏空间的一些新的条件.并证明了下面的结果:完备非紧非负截曲率Riemann流形上,若对某个常数r_0>0,当r≤r_0,密度函数<2^(1/2)r,则该流形微分同胚于欧氏空间;完备非紧截曲率有下界的Riemann流形上,若对某个常数r_0>0,当r≤r_0,密度函数小于某个比较函数,当r>r_0时,直径增长小于另一无关的比较函数,则该流形微分同胚于欧氏空间.In this paper, by virtue of the critical point theory, and using the estimate of excess function, the author obtains certain new conditions to make a complete noncompact manifolds with sectional curvature ≥0 or sectional curvature bounded below diffeomorphic to Rn. Precisely, the main results are. For a noncompact Riemannian manifold with non-negative sectional curvature, if the density function 〈√2r for r≤r0 with some constant r0〉0, then it is diffeomorphic to an Euclidean space; For a noncompact Riemannian manifold with sectional curvature bounded below, if the density function is bounded above by some comparison function for r≤r0 and the growth of the diameter is bounded above by some more weak comparison function for r〉r0 for some constant r0〉0, then it is diffeomorphic to an Euclidean space.

关 键 词:完备流形 射线 微分同胚 

分 类 号:O186.12[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象