检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪大宝[1] 刘上乾[1] 寇小明[1] 洪鸣[1]
机构地区:[1]西安电子科技大学技术物理学院,陕西西安710071
出 处:《红外与毫米波学报》2009年第6期440-444,共5页Journal of Infrared and Millimeter Waves
基 金:国家自然科学基金资助项目(60377034)
摘 要:针对复杂背景下红外弱小目标检测难题,将背景杂波抑制归结为从原始红外弱小目标图像中重建目标数据的过程,据此提出了一种基于马尔可夫随机场模型(MRF)的自适应正则化滤波算法.该算法采用MRF,建立了红外弱小目标图像的先验概率模型,并根据图像的粗糙度设计了新的势函数.在此基础上,采用MRF对背景杂波抑制过程进行正则化处理,从而实现了对红外背景杂波的自适应各向异性抑制.理论分析与实验结果表明,该算法能够随图像局部纹理特征的变化自适应地调整滤波算子结构,从而可在复杂背景下自适应地抑制杂波、增强信号,有效地提高了图像的信噪比,且该算法结构简单,更易于硬件实时实现.Aiming at the difficulty in detecting infrared(IR) dim small target under strong background clutter, the process of background suppression was attributed to the reconstruction of the target signal from the original IR dim small target image. Thus, a novel adaptive regularization filtering algorithm based on Markov random field(MRF) model was proposed. In our algorithm, the prior probability model of the IR dim small image was established by MRF, and a new potential function was introduced according to the roughness of the IR image. On this basis, the adaptive anisotropic filtering effect for background clutter suppression was realized by regularizing the process of background clutter suppression with MRF. Theoretical analysis and experimental results show that this algorithm can adjust the operator adaptively according to the local texture distribution character of the image. Thus, the target was enhanced and strong background clutter was eliminated. The proposed algorithm can improve the signal-to-noise ratio (SNR) of the image obviously with the advantage of its logical structure simple to be implemented in real-time system.
关 键 词:背景杂波抑制 红外弱小目标 马尔可夫随机场 正则化 自适应滤波
分 类 号:TN911.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.122.147