基于支持向量机的湍流退化图像加速复原算法  被引量:2

IMAGE ACCELERATION RESTORATION ALGORITHM FOR TURBULENCE-DEGRADED IMAGES BASED ON SUPPORT VECTOR MACHINE

在线阅读下载全文

作  者:黎明[1] 杨杰[2] 

机构地区:[1]上海电机学院电子信息学院,上海200240 [2]上海交通大学图像处理与模式识别研究所,上海200240

出  处:《红外与毫米波学报》2009年第6期472-475,共4页Journal of Infrared and Millimeter Waves

基  金:国家重点基础研究发展计划(51323020203-2);国家自然科学基金(60675023)资助项目

摘  要:由于湍流图像的退化原因十分复杂,现有图像复原算法很难在复原效率和复原质量间达到很好的平衡,为此提出了一种基于支持向量机的湍流退化图像加速复原算法.该算法通过设置方差阈值进行样本选择,舍弃了冗余信息、提高了样本质量;同时,对序列图像进行实时模型更新,加快了序列图像的复原速度.针对电弧风洞图像,将加速复原算法和原算法进行了比较.实验结果表明,加速算法的复原速度更快、复原效果也更好,它可以有效地解决湍流退化给图像带来的噪声和能量衰减问题,并能很好地校正湍流效应引起的模糊和抖动现象.Because of the complicated mechanisms of atmospheric turbulence, it is difficult for existing image restoration algorithms to achieve a good balance between restoration efficiency and quality. A technique for the acceleration of support vector machine based image restoration algorithm was presented to solve this problem. In this algorithm, variance threshold was applied to assist sample selection. Since redundant information was discarded by means of the sample selection algo- rithm, training samples became more effective. Meanwhile, a real-time model updating algorithm was applied to speed up the restoration rate of serial images. Comparisons of the acceleration method with the previously proposed restoration algo-rithm on electric arc wind-tunnel images were provided. Experimental results show that the proposed acceleration method runs faster and performs better. It can effectively restore the turbulence-degraded images from strong noise, energy attenuation, blur and jitter.

关 键 词:图像复原 湍流 支持向量机 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象