检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学土木工程系结构工程与振动教育部重点实验室,北京100084
出 处:《工程力学》2009年第A02期126-132,共7页Engineering Mechanics
基 金:长江学者和创新团队发展计划项目(IRT00736);国家自然科学基金项目(50278046,50678093)
摘 要:该文将杆系结构自由振动精确分析的Wittrick-Williams算法、导护型Newton法和基于单元能量投影(EEP)超收敛计算的自适应有限元法有机结合,应用于平面变截面曲梁面内自由振动的分析,可以得到数值精确解,即频率和振型的精度均可满足用户事先给定的误差限。通过对无限细密网格上的有限元模型作自由度的凝聚可转化为精确动力刚度模型的分析对比,为自适应有限元法建立了与精确动力刚度法之间的等价关系、等价公式和等价算法。并对精确动力刚度法中两阶段算法给出了自适应有限元的实施方案。该文给出了有代表性的数值算例,计算结果表明:该方法是一种精确、可靠、高效的自由振动分析方法。This paper presents a self-adaptive Finite Element Method (FEM) for the free vibration analysis of planar curved beams. The method integrates several techniques such as the Wittrick-Williams algorithm and the guided and guarded Newton method in the exact Dynamic Stiffness Method (DSM) for the vibration analysis of skeletal structures, and the self-adaptive FEM for linear BVP based on the Element Energy Projection (EEP) super-convergence calculation. The method can yield exact numerical results, i.e. the accuracy of the frequencies and the modes can satisfy the user-preset error tolerances. The finite element model on the infinitely dense mesh can be reduced to the exact dynamic stiffness model by condensation, thus it can produce exact results theoretically. Based on this comparison, the equivalence between the self-adaptive FEM and the exact DSM is set up. As a result, the corresponding equivalent formulae and equivalent algorithm are established and the two-phase algorithm for the exact DSM is extended to the self-adaptive FEM. The representative numerical examples show that this method is accurate, reliable and efficient.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42