基于先验信息的综合孔径辐射计误差校正方法  

An Error Calibration Method Based on Prior Information for Aperture Synthesis Radiometers

在线阅读下载全文

作  者:何方敏[1] 李青侠[1] 刘茁[2] 黄全亮[1] 朱耀庭[1] 

机构地区:[1]华中科技大学电子与信息工程系,武汉430074 [2]中国电子科技集团公司第十研究所,成都610036

出  处:《微波学报》2009年第6期91-96,共6页Journal of Microwaves

基  金:国家自然科学基金项目(60705018)

摘  要:误差会严重影响综合孔径微波辐射计的成像性能,需要进行校正。但是,随着系统工作频率的提高和阵列尺寸的扩大,校正难度越来越大。文中提出一种基于先验信息的综合孔径微波辐射计误差校正方法。该校正方法包括一个基于先验信息的校正矩阵以及一种基于先验信息的CLEAN算法。首先,该校正方法将含有误差的系统响应作为先验信息构造校正矩阵,并校正得到初步的反演图像;然后,利用上述先验信息估计系统的阵列因子并代入基于先验信息的CLEAN算法,校正图像中剩余的误差。仿真和实验结果表明该校正方法能有效提高综合孔径微波辐射计的成像质量。该校正方法可以在图像反演过程中全面校正综合孔径微波辐射计的误差,降低对校正系统的硬件性能要求,适用于大阵列毫米波综合孔径微波辐射计的校正误差。The errors of aperture synthesis microwave radiometers (ASMRs) have great influence on the performance of the system,and should be calibrated. However, it's difficult to calibrate the errors of ASMRs with large aperture and high working frequency. An error calibration method based on prior information for ASMRs is presented in this paper, which con- sists of a calibration matrix based on prior information and a CLEAN algorithm based on prior information. Firstly, the imper- fect system response, as the prior information, is used to construct the calibration matrix, and a primary image can be recon- structed. Then, the array factor of ASMRs estimated from the prior information is introduced to the CLEAN algorithm and used to calibrate the remained errors in the primary image. Simulation and experiment results show the error calibration meth- od can greatly improve the image quality of ASMRs. All the errors can be calibrated in image reconstruction by the calibration method, and the performance requirement of calibration hardware system is reduced. So this error calibration method is suit- able for the error calibration of large millimeter wave aperture synthesis radiometers.

关 键 词:综合孔径微波辐射计 先验信息 误差校正 图像反演 

分 类 号:TP722.6[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象