检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵宏[1,2,3] 刘爱霞[4] 王恺[1,2,3] 白志鹏[1,2]
机构地区:[1]南开大学环境科学与工程学院,天津300071 [2]国家环境保护城市空气颗粒物污染防治重点实验室,天津300071 [3]南开大学信息技术科学学院,天津300071 [4]天津市气象科学研究所,天津300074
出 处:《环境科学研究》2009年第11期1276-1281,共6页Research of Environmental Sciences
基 金:国家自然科学基金项目(20677030);天津市社会发展基金项目(06YFSYSF02900)
摘 要:基于人工神经网络的空气质量预测模型优于传统的逐步回归模型,但由于性能差异不明显而较少在空气质量预报中应用.设计了将遗传算法和神经网络算法相结合的基于GA-ANN的空气质量预测模型,并利用天津市2003—2007年气象和污染物监测资料对该模型进行验证.对2007年全年的ρ(SO2),ρ(NO2)和ρ(PM10)进行预测,预测值与实测值的相关系数分别为0.899 6,0.828 3和0.600 0.与一般的人工神经网络预测模型相比较,GA-ANN模型将空气质量等级预报的准确率从77.57%提高到79.67%.GA-ANN模型可结合其他方法进行日常空气质量预报.The forecast precision using the artificial neural networks (ANN) approach is not obviously better than using a normal stepwise regression method, as indicated by a number of studies. A GA ANN Air Quality Forecasting Model was developed, which integrated the genetic algorithm (GA) and the neural network algorithm. Air quality monitoring data and meteorological data from 2003 to 2007 in Tianjin City were used in performance tests of the air quality forecasting. The results based on the data of 2007 indicated that the correlation coefficient between the forecasted value and its monitoring value for the pollutants SO2, NO2 and PM10 was 0. 8996,0. 8283 and 0. 6000, respectively. Compared with the normal ANN Model, the forecasting precision of the GAANN Model for air quality grade was increased from 77.57% to 79.67%. It is expected that the GAANN model will be put into daily air quality forecasting work in association with other approaches.
分 类 号:X823[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33