检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《辽宁工业大学学报(自然科学版)》2009年第6期417-420,共4页Journal of Liaoning University of Technology(Natural Science Edition)
摘 要:利用微分不等式技巧研究了一类二阶非线性Hammerstein型积分微分差分方程的线性边值问题。以二阶边值问题的已知结果为基础,建立了微分差分非线性方程解的存在性,以及Hammerstein型线性方程解的唯一性。在上下解存在的条件下,构造迭代序列,由Arzea-Ascoli定理和Lebesque控制收敛定理得到了二阶非线性Hammerstein型积分微分差分方程的线性边值问题的解的存在性。再利用反证法获得了解的唯一性。结果表明:这种技巧也为其它边值问题的研究提出了一种思路。The linear boundary value problems on second order nonlinear Hammerstein type integro-differential-difference equation were studied by means of differential inequality theories. Based on the given results of second order boundary value problem, the existence of solutions of nonlinear differential-difference equation and unique of solutions of Hammerstein type integro-differential-difference linear equation were established because Harnmerstein linear equation featured only one solution. Under suit upper and lower solution, iteration sequences were constructed, and existence and unique of solutions of linear boundary value problems on second order nonlinear Hammerstein type integro-differential-difference equation were obtained by means of applying the Arzela-Ascoli theorem Lebesque control convergence theorem and disproof method. The result expatiated that this appraoch seemed new to apply these technique to solving other boundary value problems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175