检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李兵[1,2] 张培林[1] 任国全[1] 刘东升[2] 米双山[2]
机构地区:[1]军械工程学院一系,石家庄050003 [2]军械工程学院四系,石家庄050003
出 处:《振动.测试与诊断》2009年第4期445-448,共4页Journal of Vibration,Measurement & Diagnosis
摘 要:针对齿轮故障特征提取,首先将齿轮箱振动信号进行经验模态分解,得到一组固有模态函数。计算各固有模态函数的能量和矩阵的奇异值,采用Shannon熵和Renyi熵度量能量和奇异值分布,构成原始特征子集。再采用遗传算法和最小二乘支持向量机的Wrapper方法选择最优特征子集。该方法能够利用较少的特征参数集准确判别齿轮故障,提高了齿轮故障诊断的精度与效率。In order to extract the gear fault features,firstly,the gearbox vibration signal was decomposed as intrinsic model functions (IMF) by using the empirical mode decomposition (EMD) method. The energy of every IMF and the singular value of the IMF matrix were chosen as features. The Shannon and Renyi entropy of the energy and singular value distribution were also extracted. Secondly,a wrapper feature selection method employing the genetic algorithm and the least square support vector machine (LS-SVM) was used to search the optimal feature subsets for the gear fault diagnosis. The results demonstrate that the proposed approach can detect the gear faults by only using a small feature set with high accuracy and efficiency.
关 键 词:齿轮 故障诊断 经验模态分解 遗传算法 最小二乘支持向量机
分 类 号:TH17[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.211