检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安理工大学计算机科学与工程学院,西安710048
出 处:《计算机工程》2010年第1期194-196,共3页Computer Engineering
基 金:国家自然科学基金资助项目(60743009;60873035);陕西省自然科学基金资助项目(2006F43)
摘 要:针对遗传算法在处理复杂多峰函数优化问题时易于早熟和局部搜索能力差等问题,提出一种基于个体优化的自适应小生境遗传算法。在自适应小生境的基础上,利用进化过程中相邻个体的信息产生的试探点标记的算法进化方向,缩短邻域搜索的区间,提高算法的局部搜索能力。对复杂多峰问题进行的优化实验结果证明,该算法能快速可靠地收敛到全局最优解,其收敛速度和解精度均优于简单遗传算法和其他小生境算法。To solve the problems of Genetic Algorithm(GA) which is used to seek the global optimums in multimodal-function-optimization, an Adaptive Niche Genetic Algorithm based on Individual Optimization(IOANGA) is proposed. The IOANGA, which is based on adaptive Niche GA, makes use of the information of the nearest individuals generated in the process of evolution to shrink the search space and improve the ability of local search. Experimental results show that IOANGA is a much more competent optimization method than GA and other Niche methods.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.188