最小交叉熵图像重建算法  被引量:5

Image reconstruction based on minimum cross-entropy

在线阅读下载全文

作  者:王化祥[1] 王琦[1] 郝魁红[2] 

机构地区:[1]天津大学电气与自动化工程学院,天津300072 [2]中国民航大学航空自动化学院,天津300300

出  处:《仪器仪表学报》2009年第12期2574-2579,共6页Chinese Journal of Scientific Instrument

基  金:国家自然科学基金(重点;国际重大)(60532020;60820106002;60672076);国家自然科学基金委员会与中国民用航空总局联合资助项目(60672170);国家科技支撑计划(2006BAI03A14)资助项目

摘  要:CT技术通过扫描和图像重建算法,获取被检物场断层图像。由于具有非侵入性、可视化等特点,该技术在工业领域获得广泛应用。为了提高CT系统重建图像的分辨率,提出一种信息扩充策略,并以此为基础采用两种最小交叉熵算法——MAP和SMART,对多相流CT系统进行图像重建。与传统ART算法相比,最小交叉熵算法有效提高了重建图像的分辨率,减少重构图像伪影。仿真和实验结果表明,基于信息扩充的SMART算法不仅改进了重建图像质量,而且提高了实时性。During past few decades, CT was widely used in industrial area because of its characteristics of non-invasiveness and visibility. Using the principle of radiation attenuation measurement along different directions through the investigated object with special reconstruction algorithm, cross-sectional information of the scanned object can be obtained. Recently, CT technology is applied to multi-phase flow measurement to detect flow regimes. In order to improve the resolution of CT image reconstructed by conventional algorithms, a novel information extension method is proposed. Two minimum cross entropy methods, MAP and SMART, are presented for the image reconstruction of multi-phase flow CT system in this paper. The selection of weighting parameters and prior information is discussed. Both simulation and experiment results show that the SMART method with information extension not only improves the quality of reconstructed image, but also enhances the real time performance.

关 键 词:CT 图像重建算法 信息扩充 最小交叉熵 

分 类 号:TH701[机械工程—仪器科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象