检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江南大学通信与控制工程学院,江苏无锡214122
出 处:《计算机仿真》2009年第12期118-121,125,共5页Computer Simulation
摘 要:针对移动机器人路径规划的难题,运用了一种基于遗传模拟退火算法的移动机器人最优路径规划方法,对移动机器人的路径规划进行了设计,采用了栅格法对环境进行建模。为了提高路径规划的效率,采用了一种改进的避障算法来生成初始种群。将遗传算法与模拟退火算法相结合形成遗传模拟退火算法,新算法具有较强的全局和局部搜索能力。仿真实验结果证明算法相对于基本遗传算法的收敛速度、搜索质量和最优解输出概率方面有了明显的提高。Aimed at the path planning problem of mobile robot, a genetically simulated annealing algorithm of optimum path planning for mobile robots is proposed. In this paper, path planning of mobile robot is designed,grid is used to make environmental modeling. An improved obstacle avoidance algorithm is introduced to generate the initial population in order to improve the path planning efficiency. This paper develops a genetic simulated annealing algorithm by combining the genetic algorithm with simulated annealing algorithm. The new algorithm has better capability of searching globally and locally. The simulation results demonstrate that the proposed algorithm has achieved considerable improvements, in convergence speed, search quality and optimal solution output rate compared to the basic genetic algorithm.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117