检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴建虎[1] 彭彦昆[1] 江发潮[1] 王伟[1] 李永玉[1] 高晓东[1]
出 处:《农业机械学报》2009年第12期135-138,150,共5页Transactions of the Chinese Society for Agricultural Machinery
基 金:国家自然科学基金资助项目(30771244);国家"863"高技术研究发展计划资助项目(2008AA10Z210);北京市自然科学基金资助项目(6082016)
摘 要:为实现对牛肉嫩度的预测和分级,构建了试验用高光谱检测系统,在400-1 000 nm波长范围内获取牛肉表面的高光谱散射图像。从高光谱图像中提取牛肉的反射光谱曲线,用step-wise逐步回归法选择430、496、510、725、760和828 nm 6个波长建立了多元线性回归模型,用全交叉验证法验证模型的预测效果,模型的预测相关系数为0.96,预测标准差为0.64 kg。以嫩度6.0 kg为界将样本分为嫩牛肉和粗糙牛肉2类,特征波长处反射值为变量,建立了正则判别函数对牛肉嫩度分级,用全交叉验证法验证训练的效果。嫩牛肉分级准确率为83.3%,较粗糙牛肉分级准确率为90.9%,总的分级准确率为87.0%。研究表明该预测和分级技术具有一定的可行性。To predict and classify beef tenderness, a laboratory hyperspectral imaging system was developed to capture hyperspectral scattering images from the surface of beef samples in the spectral region of 400-1 000 nm. Reflectance spectral characters were obtained from hyperspectral image. By using the method of step-wise regression, six optimal bands, 430, 496, 510, 725, 760 and 828 nm were selected for establishing the multi-linear regression (MLR) model. The model gives good prediction values of beef WBSF with the correlation coefficient of cross validation of 0.96 and the standard error of cross validation of 0.64 kg. Based on the measured tenderness values, samples were divided into two classes, i.e., group 0 (〈 6.0 kg) and group 1 ( 〉 6.0 kg). From selected bands, canonical discriminant functions were built to divide samples into two classes. The full cross validation was employed with the classification accuracy of 83.3 % and 90.9 %. Resultingly, the overall accuracy of classification is 87.0 %. This research demonstrates that the hyperspectral imaging technique is useful for nondestructive determination of beef tenderness.
分 类 号:S123[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229