检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:史树敏[1,3] 冯冲[2] 黄河燕[2] 刘东升[3] 王树梅[1]
机构地区:[1]南京理工大学计算机科学与技术学院,南京210094 [2]中国科学院计算机语言信息工程研究中心,北京100097 [3]内蒙古师范大学计算机与信息工程学院,呼和浩特010022
出 处:《情报学报》2009年第6期857-863,共7页Journal of the China Society for Scientific and Technical Information
基 金:基金项目:本文得到国家863(2006AA012152,2006AA010109),国家自然科学基金(60672149)资助.
摘 要:命名实体识别是众多自然语言处理任务的核心内容之一,也是近年来的领域研究热点。本文将命名实体分为两大类:常规命名实体和领域命名实体。基于已经构建的领域本体MPO,本文提出一种基于本体知识规则与统计方法相结合的领域命名实体识别方法。该方法通过本体化实例,获取实体构成词性规则模板,结合CRFs机器学习模型,进行领域命名实体识别。实验结果表明:相比运用单一统计方法而言,该方法能使领域实体的识别性能显著提高,F值达到92.36%。同时表明本体化知识规则的有效运用,能够在领域实体边界和特殊形式领域实体识别的准确率上发挥积极作用。Named Entity Recognition (NER) is one of kernel task in many Natural Language Processing (NLP) applications, which has recently become the hot spot of research. Named Entities are classified into General Named Entities (GNEs) and Domain Named Entities (DNEs) in this paper. We put forward a method of Chinese Domain Named Entity Recognition (DNER) which combining Conditional Random Field (CRF) with the rule templates of POS based on formalized instances that acquired from domain ontology constructed already. Results of experiments indicate that such a method can improve effectively the performance on DNER and F-measure has reached 92.36% . Experimental data also show that ontological knowledge can make great effect in recognizing the boundaries of DNEs and DNEs with special forms.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.157