检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学电气工程学院,四川成都610031
出 处:《电子元器件应用》2010年第2期69-72,共4页Electronic Component & Device Applications
摘 要:无监督学习方法能够对雷达辐射源信号进行有效的识别,支持向量聚类(Support Vector Clustering,SVC)算法是一种基于支持向量机的无监督聚类方法。SVC不仅时间复杂度高,而且在处理分布复杂、不均匀样本时,识别率较低。文章结合模糊C-均值算法与SVC算法的优点,提出了一种新的混合模糊C-均值法和SVC算法的无监督聚类方法。此方法用模糊C-均值聚类算法对数据样本作初步地线性划分,以将原数据样本划分成若干子样本。再用SVC算法分别对这些子样本进一步划分,再由模糊C-均值聚类法将二次规划问题分解,因而大大减少了SVC的计算量,降低了时间消耗。相对于原数据样本,子样本的分布较为简单、均匀,容易找到更为合适的SVC参数值。对雷达辐射源信号进行聚类分析的实验结果表明,此方法处理速度较快,具有较高的识别率。
关 键 词:模糊C-均值聚类算法 支持向量聚类 无监督聚类 雷达辐射源 识别率
分 类 号:TN95[电子电信—信号与信息处理] TP311.13[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15