检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京理工大学信息与电子学院,北京100081
出 处:《北京理工大学学报》2010年第1期105-108,共4页Transactions of Beijing Institute of Technology
基 金:国家自然科学基金资助项目(60772066)
摘 要:针对粒子滤波的退化和贫化问题,提出一种GA-MCMC粒子滤波图像恢复算法.该算法引入遗传算法(GA)全局寻优和粒子总数多样性的特性,结合马尔可夫链蒙特卡罗方法(MCMC)的收敛性,将交叉、变异和选择操作融入到粒子滤波图像恢复中,提高了粒子滤波的鲁棒性、精确性和灵活性.实验结果表明,该算法能减少贫化和退化问题,且在对具有混合噪声的真实图像恢复效果方面显示了其优越性.Particle filter is applied in image restoration, in order to remove degeneracy phenomenon and alleviate the sample impoverishment problem. The global optimization and particle diversity of generic algorithm(GA) are introduced, and the convergence of Markov chain Monte Carlo (MCMC) method was combined, the crossover, mutation and selection operation were used in image restoration by particle filter, to enhance the robustness, accuracy and flexibility of the particle filter. Furthermore, a new image restoration algorithm by GA-MCMC particle filter is proposed. Simulation results showed that this method can reduce the impoverishment and degeneracy problems, and from the restoration results to mixed noisy image, we can see the effectiveness and superiority of the proposed algorithm.
关 键 词:图像恢复 粒子滤波 遗传算法 马尔可夫链蒙特卡洛(MCMC)
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15