检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邱春晖[1]
机构地区:[1]厦门大学数学系
出 处:《厦门大学学报(自然科学版)》1998年第6期807-813,共7页Journal of Xiamen University:Natural Science
基 金:国家自然科学基金;福建省自然科学基金
摘 要:得到复流形上具有逐块C(1)边界的有界域D上的(p,q)-形式的带权因子的Koppelman-Leray-Norguet公式,在适当的假定下得到D上-方程带权因子的连续解。作为应用,给出Stein流形上实非退化强拟凸多面体上(p,q)形式的带权因子积分表示式及其-方程的带权因子的连续解.The Koppelman Leray Norguet formula with weight factors of (p,q) differential forms on bounded domain with piecewise smooth boundaries on complex manifolds is obtained,and,under suitable conditions,the weight continuous solution of - equation on D is obtained.As an application,the integral representation with weight factors of (p,q) differential forms and the weight continuous solution of - equation on a real non degenerate strictly pseudoconvex polyhedra on Stein manifolds are given.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.91