检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南大学信息科学与工程学院,长沙410083
出 处:《中国图象图形学报》2010年第3期490-494,共5页Journal of Image and Graphics
基 金:国家自然科学基金项目(60573079)
摘 要:针对照度不均匀的图像提出了一种基于边缘信息构造阈值图像的分割算法。该算法着眼图像上目标、背景及照度在空间分布的连续性,利用边缘处梯度大、阈值容易确定的特点,以其边缘邻域中的极大值和极小值的均值作为该边缘处的阈值,然后以稀疏的边缘阈值为控制点,通过曲面拟合得到全图分布的阈值图像再对图像进行分割。该算法分割效果好,边缘吻合度高于其他典型算法,且抗模糊能力强,有利于平滑去噪,克服了基于边缘方法易受噪声影响的弱点。Directed against uneven illumination of image, this paper proposes a threshold image segmentation algorithm based on edge detection. According to this method,the continuity of spatial distribution of the objects, background and the illumination has been considered to determine the threshold by using the information of the edge's gradient. Then, the average of the maximum and minimum value near the edge detected by edge detection algorithm is used as the local threshold for the pixels on the edge. Using surface fitting,the threshold surface is constructed by the edge-threshold control points for image segmentation. The experimental result shows that the algorithm is efficient, and its Edge-Border Coincidence is higher than other typical algorithm. The ability of Anti-fuzzy of this algorithm is stronger and it has overcome the weakness of the edge-based method which is easy impacted by noise.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49